Multiobjective Discrete Optimization Instances Library in Julia
Modolib.jl
is a collection of instances and their efficient frontiers ( if available ) of various classes of Multi Objective Pure Integer and Mixed Integer Programs. The instances are returned as either a subtype of MOOInstance
or a subtype of BOOInstance
.
Following classes of instances are currently available through Modolib.jl
Biobjective Assignment Problems (BOAP)
Biobjective Knapsack Problems (BOKP)
Biobjective Multi Dimensional Knapsack Problems (BOKP)
Biobjective Set Covering Problems (BOSCP)
Biobjective Set Packing Problems (BOSPP)
Biobjective Mixed Binary Programming Instance (BOMBP)
Biobjective Uncapacitated Facility Location Problem (BOUFLP)
Multiobjective Assignment Problems (MOAP)
Multiobjective Knapsack Problems (MOKP)
Multiobjective Mixed Binary Programming Instance (MOMBP)
Modolib.jl
can generate the following classes of random instances:
Multiobjective and Biobjective Multi Dimensional Knapsack Problems
Multiobjective General Mixed Binary Instance
Dependencies:
Installation
Once, Julia v0.6.0 has been properly installed, the following instructions in a Julia terminal will install Modolib.jl on the local machine:
Pkg.clone("https://github.com/aritrasep/Modolib.jl")
Pkg.build("Modolib")
Contents:
- Biobjective Binary Programs
- Biobjective Assignment Problems (BOAP)
- Biobjective Knapsack Problems (BOKP)
- Biobjective Multi Dimensional Knapsack Problems (BOKP)
- Biobjective Set Covering Problems (BOSCP)
- Biobjective Set Packing Problems (BOSPP)
- Biobjective Mixed Binary Programs
- Biobjective Mixed Binary Linear Programming Instance (BOMIP)
- Biobjective Uncapacitated Facility Location Problem (BOUFLP)
- Biobjective Best Subset Selection (BOBSS)
- Multiobjective Binary Programs
- Multiobjective Mixed Binary Programs
- Random Instance Generators
- Multiobjective and Biobjective Multi Dimensional Knapsack Problems
- Multiobjective General Mixed Binary Problem
- Reading and Writing Instances
Supporting and Citing:
The software in this ecosystem was developed as part of academic research. If you would like to help support it, please star the repository as such metrics may help us secure funding in the future. If you use Modof.jl, Modolib.jl, FPBH.jl, FPBHCPLEX.jl or pyModofSup.jl software as part of your research, teaching, or other activities, we would be grateful if you could cite:
Contributions
This package is written and maintained by Aritra Pal. Please fork and send a pull request or create a GitHub issue for bug reports or feature requests.
Index:
Modolib.generate_bobss_bomblpinstance
Modolib.generate_bokp_instances
Modolib.generate_knapsack_instances
Modolib.generate_mixed_binary_instances
Modolib.read_boap_hadi
Modolib.read_boap_hadi_instance
Modolib.read_boap_hadi_non_dom_pts
Modolib.read_bobpinstance
Modolib.read_bobss_hadi
Modolib.read_bobss_hadi_non_dom_pts
Modolib.read_bobss_hadi_xycor
Modolib.read_bokp_aritra_instance
Modolib.read_bokp_hadi
Modolib.read_bokp_hadi_instance
Modolib.read_bokp_hadi_non_dom_pts
Modolib.read_bokp_xavier1
Modolib.read_bokp_xavier2
Modolib.read_bokp_xavier_non_dom_pts
Modolib.read_bomip_hadi
Modolib.read_bomip_hadi_instance
Modolib.read_bomip_hadi_non_dom_pts
Modolib.read_boscp_xavier
Modolib.read_boscp_xavier_instance
Modolib.read_boscp_xavier_non_dom_pts
Modolib.read_bospp_xavier
Modolib.read_bospp_xavier_instance
Modolib.read_bospp_xavier_non_dom_pts
Modolib.read_bouflp_hadi
Modolib.read_bouflp_hadi_instance
Modolib.read_bouflp_hadi_non_dom_pts
Modolib.read_moap_kirlik
Modolib.read_moap_kirlik_instance
Modolib.read_moap_kirlik_non_dom_pts
Modolib.read_mokp_kirlik
Modolib.read_mokp_kirlik_instance
Modolib.read_mokp_kirlik_non_dom_pts
Modolib.read_mombp_aritra
Modolib.read_mombp_aritra_instance
Modolib.read_mombp_aritra_non_dom_pts
Modolib.write_bobpinstance
Important Note about the Instances
Most of these instances are taken from different sources. We have uploaded these instances here to make life easier for users by giving them an easier access. However, it is the responsibility of all users to refer to the original website and follow the rules (or any license) defined by the (true) owners of these instances. The details of the instances are mentioned below:
Type of Problem | Number of Classes | Instances for each Class | Total Instances | Online Source | Please Cite |
---|---|---|---|---|---|
Biobjective Assignment Problem | 4 | 5 | 20 | 4 | [article4] |
Biobjective 1-D Knapsack | 4 | 1 | 4 | 1 | [article1] |
Biobjective 1-D Knapsack | 10 | 4 | 40 | 2 | [article2] |
Biobjective 1-D Knapsack | 1 | 20 | 20 | 3 | [article3] |
Biobjective 1-D Knapsack | 1 | 15 | 15 | 3 | [article3] |
Biobjective 1-D Knapsack | 1 | 3 | 3 | 3 | [article3] |
Biobjective 2-D Knapsack | 4 | 5 | 20 | 4 | [article4] |
Biobjective Set Covering | 3 | 4 | 12 | 5 | [article5] |
Biobjective Set Packing | 20 | 6 | 120 | 6 | [article6] |
Biobjective Mixed Integer Programs | 5 | 5 | 25 | 4 | [article7] |
Biobjective Uncapacitated Facility Location Problem | 3 | 4 | 12 | 4 | [article7] |
Biobjective Best Subset Selection ( Hadi Instances ) | 3 | 3 | 9 | 8 | [article8] |
Multiobjective Assignment Problem | 10 | 10 | 100 | 9 | [article9] |
Multiobjective 1-D Knapsack | 16 | 10 | 160 | 9 | [article9] |
References:
Gandibleux, Xavier, and Arnaud Freville. "Tabu search based procedure for solving the 0-1 multiobjective knapsack problem: the two objectives case." Journal of Heuristics 6.3 (2000): 361-383.
F. Degoutin and X. Gandibleux. Un retour d'expériences sur la résolution de problèmes combinatoires bi-objectifs. Journée Programmation Mathématique Multiobjectifs (PM2O). May 17th, 2002, Angers, France.
Captivo, M. Eugénia, et al. "Solving bicriteria 0–1 knapsack problems using a labeling algorithm." Computers & Operations Research 30.12 (2003): 1865-1886.
Boland, Natashia, Hadi Charkhgard, and Martin Savelsbergh. "A criterion space search algorithm for biobjective integer programming: The balanced box method." INFORMS Journal on Computing 27.4 (2015): 735-754.
Soylu, Banu. "Heuristic approaches for biobjective mixed 0–1 integer linear programming problems." European Journal of Operational Research 245.3 (2015): 690-703.
Delorme, Xavier, Xavier Gandibleux, and Fabien Degoutin. "Evolutionary, constructive and hybrid procedures for the bi-objective set packing problem." European Journal of Operational Research 204.2 (2010): 206-217.
Boland, Natashia, Hadi Charkhgard, and Martin Savelsbergh. "A criterion space search algorithm for biobjective mixed integer programming: The triangle splitting method." INFORMS Journal on Computing 27.4 (2015): 597-618.
Hadi Charkhgard, Ali Eshragh. Best subset selection via bi-objective mixed integer linear programming. Submitted to Operations Research Letters.
Kirlik, Gokhan, and Serpil Sayın. "A new algorithm for generating all nondominated solutions of multiobjective discrete optimization problems." European Journal of Operational Research 232.3 (2014): 479-488.